
 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved.

Developer Manual

Computer Science Department

Texas Christian University

Date: April 23, 2014

Authors: Stockton Ackermann, Nicholas Capurso, Eric Elsken, Myrella Garcia,

Casey Stephens, and David Woodworth.

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. i

Revision History

The following is a history of document revisions.

Version Changes Edited

Version 1.0 Initial Draft March 17, 2014

Version 2.0  Fixed grammatical
errors

 Standardized font size

 Added diagrams

April 23, 2014

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. ii

Revision Sign-off

By signing the following, the team member asserts that he or she has read the entire document

and has, to the best of knowledge, found the information contained herein to be accurate,

relevant, and free of typographical error.

Name Signature Date

Stockton Ackermann
s.ackermann@tcu.edu

Nicholas Capurso
nick.capurso@tcu.edu

Eric Elsken
eric.elsken@tcu.edu

Myrella Garcia
m.garciaurena@tcu.edu

Casey Stephens
casey.stephens@tcu.edu

David Woodworth
d.woodworth@tcu.edu

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. iii

Table of Contents
REVISION HISTORY .. I

REVISION SIGN-OFF ... II

TABLE OF CONTENTS ... III

1. INTRODUCTION .. 1

1.1. PURPOSE ... 1
1.2. SECTION OVERVIEW ... 1

2. SYSTEM OVERVIEW .. 2

2.1. SYSTEM COMPONENTS ... 2
2.2. SMARTPHONE APPLICATION .. 2
2.3. ON-BOARD CONTROL UNIT (OBCU) .. 2
2.4. TI SENSORTAGS .. 2

3. DEVELOPMENT SETUP .. 3

3.1. SMARTPHONE APPLICATION .. 3
3.2. ON-BOARD CONTROL UNIT PROGRAMMING .. 3
3.3. BLUETOOTH PAIRING VIA COMMAND LINE ... 4
3.4. OBTAINING MAC ADDRESSES .. 6

4. ANDROID APPLICATION DEVELOPMENT .. 7

4.1. USER PROFILE ... 7
4.2. VEHICLE PROFILE ... 8

4.2.1. Database Development ... 8
4.3. HOME SCREEN .. 10

4.3.1. NfcActivity ... 10
4.3.2. Helper Classes – BluetoothManager and NfcManager ... 10

4.4. TECHNICIAN MODE .. 11
4.4.1. Read and Write NFC Tags ... 11
4.4.2. View Real-time Sensors ... 11
4.4.3. View Accident File ... 13
4.4.4. GraphViewManager .. 13

4.5. SENSORSERVICE .. 14
4.6. BLUETOOTHSERVICE... 17

5. ON-BOARD CONTROL UNIT DEVELOPMENT ... 20

5.1. MASTER PROGRAM ... 20
5.1.1. Network Setup .. 20

5.2. BLUETOOTH SERVER ... 20
5.3. BLUETOOTH LE CLIENT ... 21

6. GLOSSARY OF TERMS ... 23

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 1

1. Introduction

1.1. Purpose
This document provides a guide on how to install and setup the entire FrogStar system for

future developers. Also provided will be explanations as to how to maintain and modify the

system as the need may arise.

1.2. Section Overview
Section 2 – System Overview: Gives a brief description of the FrogStar system.

Section 3 – Development Setup: Gives a guide on setting up a development environment to

develop for FrogStar.

Section 4 – Android Application Development: Shows what was necessary in order to complete

specific classes inside the application.

Section 5 – On-Board Control Unit Development: Explains the programming done for the on-

board control unit.

Section 6 - Glossary of Terms: Defines technical and project-specific terms used in this

document.

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 2

2. System Overview

2.1. System Components
There are three main components in the entire FrogStar system: The smartphone application,

the on-board control unit (OBCU), and the TI CC2541 SensorTags.

2.2. Smartphone Application
The smartphone application is used to store personal information about the user as well as

information describing one or more vehicles. The smartphone also queries its own

accelerometer and gyroscope in order to detect accidents. The user will have limited

functionality while using the app, but a technician may enter Technician Mode to make sure all

systems are working properly.

2.3. On-Board Control Unit (OBCU)
The OBCU is in charge of querying the SensorTags and checking them against the readings of

the smartphone. In this way the phone and the OBCU may correct false positives to establish

with more certainty that an accident has occurred. The OBCU must be connected to a vehicle

power source so that it can be powered on when the vehicle starts. The OBCU also must have

five Bluetooth LE USB adapters connected in order for communication with the SensorTags to

take place.

2.4. TI SensorTags
The TI SensorTags must be placed in Bluetooth LE range of the OBCU. These SensorTags will

send accelerometer and gyroscope readings to the OBCU. These readings will be used to

determine if an accident has taken place. The SensorTags will run solely on battery power. If a

sensor fails the OBCU will be alerted and prompt the user that a sensor must be replaced.

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 3

3. Development Setup

3.1. Smartphone Application
The FrogStar application code may be found on the DVD under trunk/code/FrogStarApp folder.

In order to develop the smartphone application, Eclipse must be installed on the development

computer. The Android plugin must be downloaded and installed from the Android

Development Website. The following link may be used in order to download the Android plugin:

https://developer.android.com/sdk/index.html. Development takes place in Eclipse using the

Android Development plugin. Testing of the application can be done on the smartphone itself

or on the emulator provided by Eclipse.

3.2. On-Board Control Unit Programming
The OBCU networking programs may be found on the DVD under trunk/code/OBCU Programs

folder.

To develop on the On-Board Control Unit, the Raspberry Pi, one needs an SD Card with

Raspbian Linux installed – the image can be downloaded from http://www.raspbian.org/. The

OS, by default, does not come with a GUI, though one is not required to develop and run the

FrogStar system.

With the OS installed, a number of packages are needed to develop, modify, and compile

FrogStar code. The main package used is the BlueZ Bluetooth stack for Linux. The FrogStar

system is based off of a modified version of the software included in the BlueZ package. The

source code can be obtained and extracted via the following commands (note: all commands

are run as a root user):

wget https://www.kernel.org/pub/linux/bluetooth/bluez-5.2.tar.xz

tar xvf bluez-5.2.tar.xz

A number of other packages are also needed to build the BlueZ package. The required packages

are enumerated in the following apt-get command:

apt-get install libusb-dev libdbus-1-dev libglib2.0-dev automake libudev-dev

libical-dev libreadline-dev

Note: these package names are based on Debian-based repositories.

To build the package, execute the following commands:

cd bluez-5.2

./configure --disable-systemd

make

If you would like some of the software that comes with BlueZ (gatttool and hcitool, discussed in

Section 5.3) to be installed on your Raspberry Pi, run the command “make install” after

https://developer.android.com/sdk/index.html
http://www.raspbian.org/

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 4

executing the above commands. However, this step is not necessary to modify and compile

FrogStar code.

Finally, to transfer the OBCU code off of the DVD and onto the Raspberry Pi, you’ll need to

transfer the code onto a USB. Then, plug it into the Raspberry Pi and transfer the code to your

desired location using the copy command (if the USB doesn’t automatically mount, you’ll have

to execute the Linux commands to mount the USB).

For a more in-depth explanation on modifying and compiling FrogStar code, please reference

Section 5 and Section 5.3.

3.3. Bluetooth Pairing via Command Line
In order for the OBCU and a smartphone to communicate via Bluetooth, the two devices must

be “paired” and “trusted.” In addition to the BlueZ, the following packages are needed to

performing pairing (note: all commands are run as a root user):

apt-get install python-gobject python-dbus

Next, you will need to know the smartphone’s Bluetooth MAC address. This can be found in the

“About device -> Status -> Bluetooth address” screen in the Settings application – this is shown

below:

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 5

To pair the two devices, first make sure your smartphone is advertising its Bluetooth MAC

address by going into the Bluetooth options in the Settings application, shown below:

In this example screenshot, you would need to tap on your phone’s listing (ex “TCU-CS-

GalaxyS4-2”) to cause it to be visible to the OBCU. The phone stays visible for a limited amount

of time before hiding itself again.

Next, with the phone visible to the OBCU, run the following command on the OBCU:

bluez-simple-agent hci0 XX:XX:XX:XX:XX:XX

The XX’s represent the phone’s Bluetooth MAC address. The bluez-simple-agent program will

ask you to input a PIN number – input any four-digit number and hit Enter. Next, a Bluetooth

pairing dialog will be displayed on the phone and you will be prompted to enter the same four-

digit number you chose. If entered correctly, the two devices will now be connected.

Next, you need to make the phone trusted by the OBCU (so this process won’t have to be

repeated). To do this, run the following command after the two devices are connected:

bluez-test-device trusted XX:XX:XX:XX:XX:XX yes

Finally, the Bluetooth daemon on the OBCU must be restarted:

/etc/init.d/Bluetooth restart

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 6

3.4. Obtaining MAC Addresses
SensorTag MAC addresses are needed to be programmed into a NFC tag for the FrogStar

system to startup correctly. To obtain SensorTag MAC addresses, run the following command as

root:

hcitool lescan

At this point, the hcitool program will be actively scanning for Bluetooth LE devices. Press the

white button the side of each SensorTag which causes it to start Bluetooth advertising. This will

cause its MAC address to be printed by hcitool.

To get the MAC addresses of the Bluetooth adapters plugged in to the OBCU, run the following

command:

hcitool dev

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 7

4. Android Application Development

4.1. User Profile
The User Profile screen is made up of five different input fields and one button to move onto

the next screen. The user must enter his name, birthday, address, e-mail, and an emergency

contact. The name, address, and e-mail are all EditTexts. The birthday is chosen by a DatePicker

and the emergency contact is chosen by using a ContactPicker. Once all fields are filled out and

the user clicks on the “Submit” button, all of the data is saved to a flat file within the

application. Below is the code that saves all of the data the user has input.

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 8

Using the SharedPreferences API call to write data to a file was relatively simple. Error checking

is also implemented to ensure the user does not enter anything incorrectly into the required

fields. Regular expressions are used to do this sort of error checking. Below is an example of

one of the regular expressions:

 if(!name.getText().toString().matches("[a-zA-Z '.-]+")) {
 result += "Name\n";
 }

There are similar statements to ensure valid data has been input into the EditTexts. Once all

data is validated the user may click the submit button and move onto the Vehicle Profile screen.

4.2. Vehicle Profile
The VehicleProfile activity is where the user will have to input information about the vehicle he

will be driving. The make, model, license plate, state, V.I.N., name, and color are required to be

entered. Unlike the UserProfile activity, we store all of this information in a database. The

layout is very similar to the UserProfile activity, with EditTexts and dropdown menus for the

user to input all of the relevant data. Again, if information has already been input into the

database, the user will be taken to the HomeScreen activity. If there is no data in the database

the user will stay on this activity until information has been input and validated.

4.2.1. Database Development

The database for this project is not very complex. The user may input as many vehicles he

wishes. Here is the ER diagram for the database that we have used.

Vehicle

State

ID

Make

Name

License No.

Color

Vin

Model

The ID and the VIN are used as primary keys for vehicles; all the other fields are simply

attributes. The ID field is actually named “_id” in the application. This is a field required by

Android to be in its tables. There are many classes that have been created in order for this

database to function correctly: DatabaseActivity, DatabaseLoader, MySQLiteHelper,

VehicleDataSource, VehicleProfile, and Vehicle.

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 9

DatabaseActivity is a ListActivity that implements the standard Loader callbacks provided by

Android. The Loader being used is a custom Loader implementation (DatabaseLoader) that

loads all Vehicles currently stored in the database. Reading the documentation on a ListActivity

and Loaders should be enough to understand how this activity works.

http://developer.android.com/reference/android/app/ListActivity.html

http://developer.android.com/reference/android/content/Loader.html

http://developer.android.com/guide/components/loaders.html

DatabaseLoader is an implementation of a Loader that loads a Cursor containing all the Vehicles

in the database and copies them to a List. This implementation is a common, one-time Loader

implementation. Documentation can be found online as to how this works. The important part

of the class is the following:

 public List<Vehicle> loadInBackground() {
 Log.d("FrogStar", "loading cursor");
 Cursor cur = datasource.getAllVehicles();
 List<Vehicle> temp = new ArrayList<Vehicle>();
 while(cur.moveToNext()){
 temp.add(VehicleDataSource.vehicleFromCursor(cur));
 }
 return temp;
 }

This is the method that is called whenever data needs to be loaded by the Loader. The

datasource object is an instance of our VehicleDataSource class described later. A Cursor of all

the Vehicles is loaded and copied into a list.

The MySQLiteHelper and VehicleDataSource classes are the two drivers for data storage and

retrieval. In MySQLiteHelper, the DATABASE_CREATE String is the definition of our Vehicle table

schema. The VehicleDataSource and MySQLiteHelper classes are implemented based on the

following site: http://www.vogella.com/tutorials/AndroidSQLite/article.html

Of important note are the static public methods defined in VehicleProfile: setDefaultVehicle()

and getDefaultVehicleId(). These both store and retrieve the default, or currently selected,

Vehicle ID to and from the Preferences of the application.

Finally, Vehicle is a holder class for all the fields in the Vehicle table. All fields have typical

getters and setters. toString() is also overridden to allow simple formatting of Vehicles in

different TextViews throughout the application.

http://developer.android.com/reference/android/app/ListActivity.html
http://developer.android.com/reference/android/content/Loader.html
http://developer.android.com/guide/components/loaders.html
http://www.vogella.com/tutorials/AndroidSQLite/article.html

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 10

4.3. Home Screen

4.3.1. NfcActivity

The NfcActivity class serves as the main screen, or hub, of the FrogStar application - it is from

here that the user can go to any other activity in the application. This activity is responsible for

initiating system startup or shutdown via an NFC tag swipe, launching and interfacing with the

Bluetooth and SensorServices, prompting the user to enable Bluetooth and NFC functionality,

and alerting the user of errors and confirmed crashes via dialog popups.

The operation sequence of the activity is as follows: if Bluetooth or NFC functionality is

disabled, the user will first be prompted via dialogs to enable the required functions – if this is

not done, the application will exit. Next, the activity starts the Bluetooth and SensorServices

and waits for an NFC tag to be swiped. If a FrogStar-compatible (MIFARE Ultralight) NFC tag is

swiped with the smartphone, five MAC addresses are read from the tag and are passed to the

BluetoothService to begin connecting to the OBCU. When the OBCU has been connected to and

is ready to begin accident detection, the user is told that the system is ready and the calibration

dialog will be displayed. Calibration prompts the user to place their smartphone on a flat

surface and hit the ‘Okay’ button – at this point, the SensorService is given the signal to

perform calibration and both the smartphone and the OBCU begin accident detection.

While performing accident detection, the user is shown the uptime of the system, the user’s

name, and their selected vehicle. If any errors occur, such as a disconnected SensorTag or

network timeout, the user will be alerted via a dialog and the system will continue operating if

the error isn’t fatal. If an accident is detected and confirmed by both devices, the user is shown

the emergency response dialog where they have 30 seconds to either choose to notify

emergency services or decline aid – the default action if the timeout expires is to notify

emergency services.

To shut the system down when no longer needed, the user simply swipes the initial FrogStar-

compatible NFC tag again. After receiving confirmation that the OBCU is preparing to

shutdown, the NfcActivity stops both the Bluetooth and SensorServices and the application

exits.

4.3.2. Helper Classes – BluetoothManager and NfcManager

The NfcActivity utilizes two helper classes to function properly: the BluetoothManager class and

the NfcManager class. These classes aid in modularizing the code and diving responsibilities

appropriately between all three classes: the NfcActivity is responsible for user interactions, the

BluetoothManager is responsible for interfacing with the BluetoothService, and the

NfcManager is responsible for NFC-related actions.

The BluetoothManager class acts as an interface between the NfcActivity and the

BluetoothService. Mainly, it is responsible to binding to the service, invoking the service’s public

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 11

methods, sending messages to the service, and unbinding as well as stopping the service.

Messages that the BluetoothManager takes care of are as follows: sending MAC addresses, the

shutdown command, and the confirm accident command. The BluetoothManager also provides

the BluetoothService with a reference to the NfcActivity’s Handler, so that the service may send

messages directly back to the activity.

The NfcManager class handles reading from and writing to NFC tags. In addition, it is also

responsible for setting up the foreground dispatch so that NFC-related Intents may be delivered

to the NfcActivity. Its key role in the system is to extract the five MAC addresses that have been

written to an NFC tag. In Technician Mode, the NfcManager is also used to write MAC addresses

to a new or existing tag. To conserve space on the NFC tag, MAC addresses are written without

colons, so they must be placed back in after being read in order for them to be used by the

OBCU. Finally, the NfcManager is responsible for analyzing a blank NFC tag to make sure it can

be written to and that it has enough space to fit all of the required data.

4.4. Technician Mode
Technician Mode provides a FrogStar technician the ability to read the contents (MAC

addresses) on a FrogStar-formatted NFC tag, modify an NFC tag’s content, or format a blank

NFC tag to work with the FrogStar system. Technician Mode also allows a FrogStar technician to

view real-time graphs of a device’s accelerometer or gyroscope or to open saved accident data.

It can be accessed via the NfcActivity menu.

Technician Mode makes use of the aforementioned NfcManager to read from and write to NFC

tags.

4.4.1. Read and Write NFC Tags
To read and write from NFC tags place an NFC tag against the back of the phone while in the technician

mode main screen. The five text boxes on this screen are used to display NFC-stored MAC addresses

which have either been entered by a user or read from an NFC tag. The first four belong to the

SensorTags configured to be used while the last one belong to the Bluetooth interface of the OBCU. The

app automatically detects if the tag has previously been formatted to store FrogStar information and

displays a prompt accordingly. If the tag is blank the prompt will ask if the user would like to write to it.

If the tag already has FrogStar data on it the user will be prompted either to read the data or to

overwrite it. If the user opts to write data to the tag then the contents of the five text boxes will be

written. If the user opts to read then the tag will be read and the data automatically entered into the

five text boxes.

4.4.2. View Real-time Sensors

The SensorGraphsActivity class serves as the screen where a technician may view real-time

sensor graphs or accident data. It starts and binds to the SensorService and allows the service

to deliver sensor readings to the activity so that they may be graphed. Accident detection is

also performed on this screen so that a technician may test and optimize threshold values.

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 12

When an accident is detected, the technician is notified via a dialog and it told which sensor

detected the accident.

A technician has the ability to view graphs for either the accelerometer or gyroscope,

pause/resume graphs, clear the graphs, and modify threshold values for accident detection.

The technician is also shown minimum and maximum values for each of the graphs.

The class makes use of a helper class, GraphViewManager, to handle setting up the graphs,

adding new values, and creating the “real-time” effect. The class is explained in detail in Section

4.4.2.

The key method in this class is the Handler’s handleMessage method. Sensor values from the

SensorService are delivered to this method and it is here that they are sent to the

GraphViewManager to be added to the graphs and are also tested against our accident

detection thresholds. The following code snippet comes from the handleMessage method:

//Get sensor readings from the Bundle
float x = data.getFloat(prefix + "X");
float y = data.getFloat(prefix + "Y");
float z = data.getFloat(prefix + "Z");

//Graph the new sensor reading
mGraphViewManager.addNewValue(GraphViewManager.TYPE_X_VALUE, x);
mGraphViewManager.addNewValue(GraphViewManager.TYPE_Y_VALUE, y);
mGraphViewManager.addNewValue(GraphViewManager.TYPE_Z_VALUE, z);

//Update min/max values
tvXMaxY.setText(""+round4Decimals
 (mGraphViewManager.getMaxValue(GraphViewManager.TYPE_X_VALUE)));
tvXMinY.setText(""+round4Decimals
 (mGraphViewManager.getMinValue(GraphViewManager.TYPE_X_VALUE)));
tvYMaxY.setText(""+round4Decimals
 (mGraphViewManager.getMaxValue(GraphViewManager.TYPE_Y_VALUE)));
tvYMinY.setText(""+round4Decimals
 (mGraphViewManager.getMinValue(GraphViewManager.TYPE_Y_VALUE)));
tvZMaxY.setText(""+round4Decimals
 (mGraphViewManager.getMaxValue(GraphViewManager.TYPE_Z_VALUE)));
tvZMinY.setText(""+round4Decimals
 (mGraphViewManager.getMinValue(GraphViewManager.TYPE_Z_VALUE)));

//Check the new readings against our thresholds to detect an accident
if(!mAccidentDialogShowing && checkThreshold(x, y, z, sensor1) && mBound){

mAccidentDialogShowing = true;

//Pause graphs
 ((ToggleButton)findViewById(R.id.btnPauseStart)).performClick();
 //Display accident dialog
 if(prefix.equals("accel"))
 showAccidentDialog("Accel");
 else
 showAccidentDialog("Gyro");

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 13

}

Note: The “prefix” variable refers to either the String “accel” or “gyro” according to what sensor
the activity is interested in graphing.

First, the x, y, and z components of the sensor readings are taken from the Bundle and given to
the GraphViewManager to graph on their respective graphs (denoted by a constant (ex:
TYPE_X_VALUE)). Each of the minimum and maximum value TextViews are updated accordingly
(with their values rounded to up to 4 decimal places). Finally, the sensor reading is checked
against our predetermined thresholds and if an accident is detected the graphs are paused and
the user is shown the accident dialog.

Not shown is the snippet of code that checks the sensor readings of the sensor not being
graphed against the predetermined thresholds.

4.4.3. View Accident File

A technician also has the ability to view information about the last accident that was recorded.

The SensorService keeps track of sensor readings that occurred in the last minute of operation,

thus a technician can review sensor readings up to one minute before an accident was

confirmed.

The SensorGraphActivity and GraphViewManager classes are also used for this purpose, though

they operate differently from real-time sensors mode. In this case, the GraphViewManager is

instructed to read sensor readings from the accident data file and graph them accordingly.

Because of the amount of sensor readings that may exist in the accident file, I/O and graphing is

done in the background while the technician is shown a “loading” dialog and asked to wait. The

technician has the ability to switch between the accelerometer and gyroscope graphs and can

also view the minimum and maximum values of each of the graphs being displayed.

4.4.4. GraphViewManager

The GraphViewManager class is responsible for setting up sensor graphs for the

SensorGraphActivity. We use an external graphing library called AChartEngine for this

functionality. The library can be found here: https://code.google.com/p/achartengine/

When in real-time graphing mode, the graphs are created and initialized with a horizontal line

at y=0. To create a “real-time” effect, the graphs remove the oldest sensor reading when a new

one comes in, thus causing the graph to appear to move towards the left and “disappear.” The

following code performs this action:

public void addNewValue(byte type, float value){
 XYSeries current = mCurrentSeries.get(type);

 if(current.getItemCount() < maxPoints){
 current.add(current.getMaxX() + 1, value);

https://code.google.com/p/achartengine/

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 14

 }else{
 //"Cycle" graph to produce realtime effect
 current.remove(0);
 current.add(current.getMaxX() + 1, value);
 }

 mGraphViews.get(type).repaint();
}

When graphing from file, a thread is launched to read from the accident file and fill the graphs.

When done graphing, the thread notifies the SensorGraphActivity to refresh its Views via its

Handler. The following is the code for the thread:

private class DisplayReadingsThread extends Thread {
 public DisplayReadingsThread(){}

 @Override
 public void run(){
 mQueue = readFromFile();
 Log.d(TAG, "Number of readings in file: " + mQueue.size());

 SensorReading r = new SensorReading(0l, 0.0f, 0.0f, 0.0f,(byte)0);
 Iterator<SensorReading> iterator = mQueue.iterator();
 //For each sensor reading, place it in the appropriate graph
 while(iterator.hasNext()){
 r = iterator.next();

 if(r.type == mSensorType){
 Log.d(TAG, "YES");
 mCurrentSeries.get(0).add(TYPE_X_VALUE, r.x);
 mCurrentSeries.get(1).add(TYPE_Y_VALUE, r.y);
 mCurrentSeries.get(2).add(TYPE_Z_VALUE, r.z);
 }
 }

 //Tell the activity that it can refresh the graphs now

 mActivityHandler.sendMessage(mActivityHandler.obtainMessage
(SensorGraphsActivity.GRAPHS_READY));

 }
}

First, sensor readings are read from the accident file into a Queue. Then, every reading that

matches the type of sensor being graphed is graphed. Finally, when all points are graphed, the

SensorGraphsActivity is told, via a Handler message, to refresh the UI.

4.5. SensorService
The SensorService runs in the background of the smartphone application and will read the

smartphone’s accelerometer (measured in meters/second²) and gyroscope (measured in

radians/second) sensors for accident detection. In the case of the accelerometer, we actually

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 15

use the Linear Accelerometer software sensor which automatically removes gravity and keeps

the coordinate system relate to the phone, regardless of its orientation. Gyroscope readings are

treated to use an absolute coordinate system rather than the position of the phone. The code

used to calibrate the gyroscope is as follows:

//Calculate the Rotation Matrix according to the initial orientation of the
//smartphones
if(mAccelSampled && mMagnetSampled){

Log.d(tag, "Getting R");
mCalculatedR = SensorManager.getRotationMatrix(R, null, mAccelerationValues,
 mMagnetometerValues);

 if(mCalculatedR){
 Log.d(tag, "R Calculated");

//Unregister unneeded magnetometer and accelerometer after the
rotation matrix has been calculated

 mSensorManager.unregisterListener(this, mMagnetometer);
 mSensorManager.unregisterListener(this, mAccelerometer);
 Matrix.invertM(RInv, 0, R, 0);
 Matrix.multiplyMV(inputNormal, 0, RInv, 0, input, 0);
 return;
 }else{
 return;
 }
}

Essentially, the idea is to rotate the gyroscope vector to the world (absolute) coordinate system

(see http://developer.android.com/reference/android/hardware/SensorEvent.html, about

halfway down, for the axes description in the world coordinate system). To do this, we use

Android’s built-method to get the required rotation matrix which requires accelerometer

(standard, non-linear) and magnetometer readings. We obtain accelerometer and

magnetometer readings, calculate the rotation matrix, stop poling these sensors, and then we

finally inverse the matrix. After this point, every time gyroscope readings are received, they are

multiplied by this rotation matrix to get them into the world coordinate system.

The service saves readings into a linked list queue for a set amount of time (one minute), using

the sensor reading’s timestamp to define the amount of time passed. When the set time is

passed, the oldest readings will be popped off the queue’s stack in favor of new readings. This

service also handles accident detection on the phone. When an accident is confirmed, all

readings on the queue are dumped to file and the sensors are stopped.

Here are the main methods that execute in the service:

 public int onStartCommand(Intent intent,int flags,int startId)

The onStartCommand method is used to initialize the RandomAccessFile (the object we use to

read and write to file). This method is also used to setup the sensors when the service is

created.

http://developer.android.com/reference/android/hardware/SensorEvent.html

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 16

 public void onSensorChanged(SensorEvent event)

The onSensorChanged method is called whenever new sensor readings are available. If the

application is in Technician Mode, the sensors will read at GUI update speeds and bundles

holding the values are sent to the SensorGraphsActivity. Here is some example code showing

what happens when Technician Mode is on:

if (mTechnicianMode){ // used to only send bundles if Technician Mode on
(for graph)

sensorvalues = new Bundle();
 sensorvalues.putBoolean(prefix+"Values",true);
 sensorvalues.putLong(prefix+"Time", event.timestamp);

if(source == mGyroscope){
 sensorvalues.putFloat(prefix+"X", inputNormal[X]); // inputNormal = Gyro
 sensorvalues.putFloat(prefix+"Y", inputNormal[Y]);
 sensorvalues.putFloat(prefix+"Z", inputNormal[Z]);
}else{
 sensorvalues.putFloat(prefix+"X", input[X]); //input = Accel
 sensorvalues.putFloat(prefix+"Y", input[Y]);
 sensorvalues.putFloat(prefix+"Z", input[Z]);
}

 send.setData(sensorvalues);

If the method is not in Technician Mode, the phone will query its sensors at a normal rate and

will push the new sensor values onto the linked list queue:

if(!mTechnicianMode){//adds values to bundle and puts them in queue(linked list)
temp = new SensorReading(event.timestamp, event.values[0], event.values[1],

event.values[2], sensorType);

mQueue.add(temp);
 queueTimeCheck();
}

 class ServiceHandler extends Handler

The ServiceHandler class is used to setup the service’s Handler, allowing the service to send and

receive messages from other activities and respond accordingly. The following messages are

handled: registering the sensor’s reading speeds, recalibrating the sensors, and exiting the

SensorService.

 class SensorReading

The SensorReading class is used as a data structure to hold all pertinent information received

from the sensors. These SensorReading objects are what are added to the Queue.

 public void queueTimeCheck()

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 17

The queueTimeCheck method is used to set the length of the Queue to a certain number of

objects (sensor readings) based on time passed between the oldest sensor reading and the

newest reading. Each time a new object is added to the queue, this method is called to see if

the oldest element needs to be popped. The constant SECONDS_LIMIT is used to decide the

time length of the queue.

 private boolean checkThreshold(float x, float y, float z, byte sensor)

The checkThreshold method is used to determine if any of the sensor readings exceed the

minimum or maximum threshold value that were predetermined to be the equivalent of an

accident. If a value does go over the threshold then the method returns true, indicating that the

phone has detected an accident. Here is an example of how the method operates for the

accelerometer:

 if(sensor == GraphViewManager.SENSOR_ACCELEROMETER)
 return ((x*x) + (y*y) + (z*z)) > THRESHOLD_ACCEL_MAGNITUDE
 || (x < THRESHOLD_ACCEL_X_MIN) || (x > THRESHOLD_ACCEL_X_MAX)
 || (y < THRESHOLD_ACCEL_Y_MIN) || (y > THRESHOLD_ACCEL_Y_MAX)
 || (z < THRESHOLD_ACCEL_Z_MIN) || (z > THRESHOLD_ACCEL_Z_MAX);

4.6. BluetoothService
The BluetoothService class is responsible for maintaining a connection with the Bluetooth

Server running on the OBCU. A single thread is used to connect to the OBCU and perform I/O

according to a number of predefined commands. The NfcActivity’s (home screen) Handler is

registered with the BluetoothService so that it can be notified about connection information,

confirmed accidents, or network errors.

Following is the state diagram for the BluetoothService:

Connect

Phone is
attempting to
connect to te
OBCU

Start Monitoring

The phone has told
the OBCU to start
monitoring the
SensorTags.

Accident Detection

Accident detection
is taking place.

Shutdown

Phone sends the
shutdown
command to the
OBCU.

Done

Error

Shutdown

Close App

Request MACs

Error Report/Timeout
Error Report/Timeout Error Report Error Report/Timeout

ACK

Accident
Detected

ACK ACK NFC Swipe

Confirming
Accident

Accident is being
checked between
OBCU and phone.

Timeout

Accident
Confirmed

User is being
shown the accident
confirmed dialog.

Deny

Notifying

Notify/TimeoutConfirmed

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 18

While in the Connect state, the BluetoothService attempts to connect to the OBCU’s Bluetooth

Server. Upon an established connection, the OBCU requests MAC addresses to be sent from

the smartphone and uses these MAC addresses to connect to and configure the SensorTags.

Once all SensorTags have been configured successfully, the OBCU sends an ACK command to

notify the Bluetooth Server that it is ready to begin monitoring.

In the Start Monitoring state, the BluetoothService sends the Start Monitoring command and

waits for the OBCU to send an ACK back to signify that it will begin accident detection.

During the Accident Detection state, the BluetoothService waits for an accident to be detected

by the SensorService. When a potential accident is detected by either the smartphone or the

OBCU, the BluetoothService moves into the Confirming Accident state where it waits a small

amount of time for both devices to deliver “accident detected” messages to the service. If the

timeout is reached, an accident is not confirmed and the service moves back into the Accident

Detection state. If both devices agree, the BluetoothService tells the NfcActivity to display the

emergency response dialog to the user and the service moves into the Accident Confirmed

State.

During the Accident Confirmed state, the user is dealing with the emergency response dialog. If

they select the “I’m Alright” option, the system resumes accident detection. If the user selects

the “Notify” option or the dialog timeout expires, the system is shut down while emergency

response is notified.

When the user swipes an NFC tag to shut down the system, the BluetoothService is told to send

the shutdown command to the OBCU. Upon receiving an ACK from the OBCU, the smartphone

application is allowed to quit.

During any of these stages, errors may occur. Error reports may be sent from the OBCU

following the ERR command. These reports are displayed to the user, but if it is not a fatal error,

the system continues operation. The BluetoothService also uses timeout threads to detect

possible connection drops between the smartphone and the OBCU.

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 19

The key method in the BluetoothService is the processState method. This method is called

when a message is received from the OBCU and the appropriate action is taken by the

BluetoothService depending on what state the service is currently in (filtered by case

statements). For example, an ACK has one meaning while in the Connecting state (OBCU has

configured all SensorTags) and another in the Shutdown state (OBCU is shutting down). The

following is an example of the Connecting state:

switch(result){
 case ResultCodes.COMMAND_REQUEST_MACS:
 mTimeoutThread.interrupt();

 Log.d(TAG, "OBCU is requesting MACs...");

 ClientHandler.sendMessage(mClientHandler.obtainMessage
 (ResultCodes.COMMAND_REQUEST_MACS));

 mTimeoutThread = new TimeoutThread(2 * TIMEOUT_PERIOD);
 mTimeoutRunning = true;
 mTimeoutThread.start();
 break;

 case ResultCodes.COMMAND_ERR:
 mTimeoutThread.interrupt();
 sendErrorToActivity(new String(buffer, 2, (byte)buffer[1]));
 break;

 case ResultCodes.COMMAND_ACK:
 mTimeoutThread.interrupt();

 Log.d(TAG, "OBCU has connected and configured all SensorTags.");
 mState = STATE_SYSTEM_STARTUP;
 mThread.writeMessage(

(char)ResultCodes.COMMAND_START_MONITORING + "");

 mTimeoutThread = new TimeoutThread(TIMEOUT_PERIOD);
 mTimeoutThread.start();
 break;

}

While in the Connecting state, receiving the REQUEST MACs command sends a message to the

main activity to pass MAC addresses down to be sent to the OBCU. Receiving the ERR command

causes the service to send the error report to the main activity to display to the user. Receiving

an ACK allows the service to move to the System Startup state.

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 20

Waiting

Waiting for the
SensorTags to be
connected and
configured.

Monitoring

Accident detection
is taking place.

Shutdown

Preparing to
shut the OBCU
down.

Done

Error

Error Report
from BLE Client

Start Monitoring
Command from

Phone

Shutdown Command
from Phone

ACK
from BLE Client

5. On-Board Control Unit Development
To compile the FrogStar .c files that are not included in the BlueZ package (Master.c,

NetworkSetup.c, NetworkSetup.h, and BluetoothServer.c), run the following command:

gcc –o BluetoothServer BluetoothServer.c NetworkSetup.c $(pkg-config --cflags --

libs glib-2.0) –l Bluetooth; gcc –o Master Master.c NetworkSetup.c $(pkg-config --

cflags --libs glib-2.0) –l Bluetooth

To compile the FrogStar file that is modified from BlueZ software (interactive.c), see Section

5.3.

5.1. Master Program
The Master program (Master.c) serves as the parent of all FrogStar programs on the OBCU. It is

responsible for getting MAC addresses from the smartphone and forking to run the Bluetooth

Server program and the Bluetooth LE Client Program.

5.1.1. Network Setup

Code to setup an advertising Bluetooth server is in the NetworkSetup.c file. A Bluetooth server

is created and advertises on a UUID known ahead of time (00001101-0000-1000-8000-

00805F9B34FB is a default UUID for such services). The NetworkSetup class also includes

functions to create non-blocking sockets so that execution will not block if there is nothing that

has been sent from the smartphone.

5.2. Bluetooth Server
The Bluetooth Server program (BluetoothServer.c) has the sole purpose of managing

communication with the smartphone. It reads commands that have been sent over from the

phone and, if needed, forwards the commands to the Bluetooth LE Client program so that it

may respond. Generally speaking, it acts as a middle-man between the Bluetooth LE Client

program and the smartphone’s Bluetooth Server – example commands include accident

confirmation, errors, and shutdown.

The following is state diagram for the Bluetooth Server:

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 21

During the Waiting state, the Bluetooth Server waits for an ACK from the Bluetooth LE Client

signaling that all SensorTags have been configured. It then forwards this command to the

BluetoothService on the smartphone. The smartphone next sends the Start Monitoring

command to the BluetoothServer which moves the server into the Monitoring state.

In the Monitoring state, the Bluetooth Server waits for accident detected commands from the

Bluetooth LE Client and forwards these commands to the BluetoothService.

Finally, upon receiving the shutdown command from the phone, the Bluetooth Server sends

this command to the LE Client and waits for an ACK sent by the LE Client after it has

disconnected from the SensorTags and is ready to shut down. The server sends this ACK to the

BluetoothService so that the smartphone application can exit.

Errors can occur in any of these states (for example, a SensorTag being offline or lost

connection). The Bluetooth Server is responsible for forwarding any error reports to the

BluetoothService so that the user can be notified.

5.3. Bluetooth LE Client
The SensorTags are queried by a modified version of the gatttool program. Gatttool is a utility

program provided in the BlueZ Bluetooth software stack for Linux. BlueZ is the standard

package used for Bluetooth communication on Linux. BlueZ version 5.2 is used since this was

the easiest to compile and get running on a Debian-based operating system. The BlueZ package

includes a number of programs that are used to work with Bluetooth devices. Hcitool is one

such program that is used to scan for LE devices and connect them to the Raspberry Pi.

To start development on reading from the SensorTags, look at the following sites:

http://processors.wiki.ti.com/index.php/SensorTag_User_Guide,

http://mike.saunby.net/2013/04/raspberry-pi-and-ti-cc2541-sensortag.html,

http://stackoverflow.com/questions/17835469/using-bluetooth-low-energy-in-linux-command-

line.

The first site is a reference of all handles and required data values/configurations to make the

SensorTags sensors work. This is where you will go to find out what exactly needs to be sent to

and queried from the SensorTags. The second is a good guide on how to setup the Raspberry Pi

to communicate with SensorTags via a terminal. Read the comments and run through the

command line gatttool example. The accepted answer on the third site has a lot of good links

for Bluetooth on Linux and using BlueZ.

To implement SensorTag querying, modify the code of the BlueZ 5.2 package; start by

downloading and extracting the package tar, run the config file, then finally run the make

command to build the package. The gatttool program source resides in the attrib directory of

the BlueZ package. gatttool.* are the files for the gatttool program itself. interactive.* are used

by gatttool in interactive mode (command line example). Modify the actual contents of the

http://processors.wiki.ti.com/index.php/SensorTag_User_Guide
http://mike.saunby.net/2013/04/raspberry-pi-and-ti-cc2541-sensortag.html
http://stackoverflow.com/questions/17835469/using-bluetooth-low-energy-in-linux-command-line
http://stackoverflow.com/questions/17835469/using-bluetooth-low-energy-in-linux-command-line

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 22

attrib directory files in order to make compilation easy. Simply modify the source in the

package, and run the make command in the parent directory of the package to build it. A

my_compile script is provided and should be present in the package’s directory. This script

should be run to compile the gatttool program with the math library linked in. The modified

gatttool program is “execed” from the Master program to query the SensorTags and perform all

necessary calculations. To make this easy, the Master program is sourced, compiled, and run

from the attrib directory.

The main modified file is interactive.c. The program runs in a glib main event loop. Functions

are called in the event loop and callbacks are called when the request finishes. Rather than

developing a mechanism to emulate this procedure, keep the current structure of the program

and modify what is necessary. A child process is driving calls to the parent process, and waits

for an acknowledgment from the parent signaling that the parent is ready for the next

command. The order of events is system startup, connecting to all the SensorTags, configuring

the SensorTags, and finally querying the sensors. Of note are the cmd_read_hnd and

char_read_cb functions. These functions are the main functions used for querying sensor

values. When the child process drives the parent to read a value, cmd_read_hnd is called. The

appropriate call is made with the right handle (for example, to retrieve accelerometer values),

then when values return from the SensorTag, char_read_cb is called and passed the result. In

the char_read_cb function we have logic to move to the next sensor and/or SensorTag and

make calls to our accident detection logic. The SensorTags are queried in a round robin fashion.

Specifically, the line in the cmd_read_hnd function:

gatt_read_char(sensorTags[tagIndex].attrib, handle, char_read_cb,

sensorTags[tagIndex].attrib);

is where a SensorTag is queried by the gatttool package and the callback function

(char_read_cb) is denoted as the function to be called when a result is ready. Changing these

functions should give the most control in how the SensorTags are queried and how the results

are parsed and/or used.

Developer Manual
Version 2.0

 © 2013 – 2014 Computer Science Department, Texas Christian University. All Rights Reserved. 23

6. Glossary of Terms

Accelerometer – A device that measures acceleration, or the rate at which speed changes.

Android – An open-source operating system developed for mobile devices by Google.

Bluetooth – A short-ranged, peer-to-peer, wireless communication protocol. Bluetooth LE

refers to a low-energy Bluetooth standard.

GATT – General Attribute, protocol used by Bluetooth LE communication.

Gyroscope – A device that measures orientation in terms of yaw, roll, and pitch.

MAC – Media Access Control address - A hardcoded physical address for a networking

interface.

NFC – Near-field communication – A set of standards that allow devices to communicate in very

close proximity.

TI CC2541 – A Bluetooth-capable SensorTag offered by Texas Instruments that houses various

sensors including an accelerometer and a gyroscope.

